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Jacalin regulates IgA production by peripheral 
blood mononuclear cells

IgA nephropathy (IgAN) is the most common 
form of glomerulonephritis and is characterized 
by elevated serum IgA. Deposition of circulating 
immune complexes (CICs) containing IgA on the 
glomerular mesangium causes the proliferation of 
mesangial cells and acceleration of extracellular 
matrix production in glomerulonephritis [1–5]. 
Although the etiology of IgAN is not fully 
understood, suggested causes are genetic defects 
resulting in aberrant lymphocyte class switching 
[6], food antigens [7] and influenza antigen-
induced immune complexes [8]. Although IgAN 
patients have elevated circulating IgA, their IgG 
levels are normal, causing long-term imbalances 
in immunoglobulin (Ig) levels. As a result, IgA 
is bound by IgA-binding receptors on mesangial 
cells in the glomerulus, such as the transferrin 
receptor or IgA Fc receptor  [3,9–11], which cause 
proliferation. In addition, IgA deposition on 
mesangial cells induces inflammation [10].

Of the two IgA subtypes, IgA1 is considered 
to make up the majority of IgA-containing 
CICs deposited on mesangial cells [4]. The 
IgA1 subtype contains sugars on the hinge 
region, which are typically absent in IgA2. The 
sugars are grouped into five types: ST and dST 
are normal sugar types, while T, Tn and STn 
are abnormal sugar types. Unlike in healthy 
individuals, circulating IgA1 in IgAN patients 
has a higher concentration of abnormal sugar 
types [12–16]. However, non-IgAN patients and 
healthy individuals also have IgA1 containing 
the abnormal sugar types [17]. In an earlier 
study [18], the present authors researched the 

sugar pattern on IgA in IgAN serum by using 
denatured jacalin; the ratio of abnormal sugars 
to normal sugars was 62.5:20.9% in IgAN 
serum and normal control serum, respectively.

Abnormal sugar types may relate to the 
pathological mechanism of IgAN; however, 
this is controversial. Furthermore, polymeric-
IgA, which results from polymerization of 
IgA1 [19] and CIC containing IgA1 [3], has been 
investigated as an index of disease progression.

In addition to nephropathy treatment, it is 
necessary to treat elevated serum IgA1. Steroid 
pulse treatment [20] and tonsillectomy [16] are 
effective and reduce inflammation. However, 
long-term steroid treatment [21] and tonsillectomy 
are known to be immunosuppressive. Thus, there 
is need for a novel therapy without deleterious 
side effects.

The aim of this study was to identify a novel, 
safe, immunotherapeutic approach to regulate 
IgA production from B cells. Activated CD4+ 
naive T  cells (Th0) are differentiated into 
T-helper subsets (i.e., Th1, Th2 and Th17) or 
Tregs, depending on the local cytokine milieu 
[22]. Th1 and Th17 are effector cells involved 
in cytotoxicity, while Th2 effectors produce 
cytokines that stimulate Ig production from 
B cells. Tregs function to regulate the immune 
system [23–25] and can suppress the function 
of Th2 cells. Unlike cancer immunotherapies, 
which would require increasing effector T‑cell 
function, autoimmune diseases such as IgAN 
can be treated by controlling effector cell 
function through Tregs.

Aims: In IgA nephropathy, circulating immune complexes containing IgA1 are deposited on the glomerular 
mesangium, causing mesangial cell proliferation and acceleration of extracellular matrix production. The 
suppressive effect of jacalin, a galactose-binding lectin, on IgA production in vitro was determined. 
Materials & methods: Normal human peripheral blood mononuclear cells were stimulated with plate‑bound 
anti-CD3 and Th2 stimulation, with or without jacalin. Regulatory and effector cell subsets were determined 
by flow cytometry, and immunoglobulin production by ELISA. Results: Jacalin increased the ratio of 
CD4+CD25+CD152+ Tregs:effector T  cells in peripheral blood mononuclear cell cultures 60-fold. This 
CD4+CD25+CD152+ Treg increase may have inhibited Th2-stimulated IgA production by B  cells. 
Conclusion: Immune tolerance induced by jacalin can suppress IgA production.
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Jacalin, a lectin present in edible jackfruit 
seeds, binds to O-linked glycosides on IgA1. 
Jacalin has been found to have mitogen activity 
[26] and to act on B cells via IgA production 
directly [27]. However, these studies did not 
discuss its potential for IgAN treatment; 
moreover, the details of the immune mechanism 
are unknown for T  cells, Tregs and B  cells. 
Thus, on the basis of previous research [17,28,29], 
the present study clarifies the mechanism of 
jacalin-induced IgA production from B cells 
and aims to propose the application of jacalin 
in IgAN treatment.

Materials & methods
�� Purification of jacalin

Jacalin, a water-soluble protein, was extracted 
from the seeds of jackfruit as previously 
described [18]. Jackfruit seeds (10  kg) were 
crushed by a food processor and suspended 
in deionized water. The suspension was 
filtered through a membrane filter (pore size: 
0.22  µm; Millipore, Billerica, MA, USA) 
for sterilization, and the filtrate was dialyzed 
against deionized water in a cellulose acetate 
tube (cut-off molecular weight: 10 kDa; Sanko 
Junyaku, Tokyo, Japan) at 4°C for 72 h. The 
dialyzed filtrate was freeze-dried to yield 24 g 
of crude powdered extract. The molecular 
weight of purified jacalin was measured using 
a high performance liquid chromatography 
system and a SW2000 column (Tosoh, Tokyo, 
Japan). The 15‑ and 60‑kDa samples contained 
purified jacalin monosubunit (a-subunit) and 
tetrameric protein, respectively.

�� Samples & cell preparation
Blood and plasma samples were obtained from 
IgAN patients at Mie University Hospital 
(Japan), with their consent, and in agreement 
with the ethical guidelines of the medical 
department. A total of 30 plasma samples from 
IgAN patients and 22 from healthy volunteers 
were analyzed. Peripheral blood mononuclear 
cells (PBMCs) were isolated from peripheral 
blood using the density-gradient solution 
Lymphoprep (Axis-Shield PLC, Scotland, 
UK) in a centrifugal separator (Hitachi, Tokyo, 
Japan) [30]. Heparinized blood (15 ml) diluted 
in an equal volume of saline solution was added 
to the Lymphoprep tube and spun at 800 × g 
for 10  min to separate the PBMC fraction. 
CD4+ T-helper cells and CD19+ B cells were 
isolated from PBMCs using antibody-coated 
magnetic beads (Miltenyi Biotech, Bergish, 
Germany) [31]. PBMCs (107 cells/80  µl) 

suspended in phosphate-buffered saline (PBS) 
containing 1 mM ethylenediaminetetraacetic 
acid and 0.5% bovine serum albumin (BSA; 
Sigma‑Aldrich, MO, USA) were incubated with 
CD4 or CD19 microbeads (Miltenyi Biotech) 
at 4°C for 15 min. After incubation, the cell 
suspension was centrifuged at 600  ×  g for 
10 min; the cell pellet was resuspended with PBS 
containing 1 mM ethylenediaminetetraacetic 
acid and 0.5% BSA. CD4+ cells and CD19+ 
cells were collected through the LS-column 
of a magnetic activated cell sorting separator 
(Miltenyi Biotech).

�� Cell culture
Isolated CD4+ T  cells were suspended at a 
concentration of 106 cells/ml in RPMI 1640 
medium (Sigma-Aldrich; supplemented 
with l-glutamine, 1% fetal bovine serum 
(FBS), penicillin and streptomycin). For Th2 
differentiation studies, cells were incubated in 
24-well plates coated with anti-CD3 antibodies 
(1  µg/ml in lieu of APCs) at 37°C for 2  h; 
IL‑2 (20 ng/ml) and IL‑4 (20 nM/ml) were 
then added, and the plate was incubated at 
37°C (5% CO

2
) for 5 days. For Ig production, 

PBMCs or CD19+ cells were suspended in 
RPMI 1640 (2 × 105 cells/ml) in 24-well plates 
under two stimulation conditions: anti-CD40 
(0.5 µg/ml) and IL‑4 (5 µg/ml) at 37°C for 
7 days (i.e., T‑cell dependent Ig production) 
and IL‑4 (5 µg/ml) alone at 37°C for 7 days 
(i.e.,  T‑cell independent Ig production). 
Where required, jacalin was added to a final 
concentration of 10 µg/ml in each well.

�� Flow cytometry
The differentiation of PBMCs, CD4+ T cells 
and CD19+ B cells by jacalin was evaluated by 
flow cytometry using FACSCalibur (Becton 
Dickinson, NJ, USA). PBMCs or T cells were 
suspended in 1 ml of PBS containing 2% FBS 
and stained with 20  µg/ml of anti-CD25-
fluorescein isothiocyanate antibody (Ab; clone 
B1.49.9; Beckman Coulter, CA, USA) and 
anti-CD152-PE Ab (clone L3D10, Beckman 
Coulter, CA, USA; 20 µg/ml; anti-CTLA‑4 
Ab) to measure Tregs. To quantify the B‑cell 
subclasses, B1 and B2, PBMCs or B cells were 
suspended in 1 ml of PBS containing 2% FBS 
and stained with 20 µg/ml of anti-CD19-APC 
Ab (clone LT19, AbD Serotec, Oxford, UK), 
20  µg/ml  of anti-CD5-PECy7 Ab (clone 
53–7.3; Santane Cruz Biotechnology, CA, 
USA) or 20 µg/ml of polyclonal anti-IgA-RPE 
Ab (AbD Serotec).
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�� ELISA
The concentration of IgA, IgG, TGF‑b 
and CICs in serum samples and cell culture 
supernatants were measured by ELISA. For 
TGF‑b measurement, samples were activated 
with 0.2N HCl for 10 min and measured by the 
human TGF‑b DuoSet (R&D Systems, MN, 
USA), with unknown sample concentrations 
extrapolated from the standard curve. IgA 
and IgG were measured with human IgA or 
IgG ELISA Quantitation kits (10,000-fold 
dilution; Bethyl, TX, USA) and concentration 
was determined from the standard curve with 
the international standard plasma (IRMM 
ERM-DA470 ; ReCCS, Tokyo, Japan). 
Antihuman IgA or IgG were added to a 96-well 
plate (100 µl/well) and incubated for 1 h to 
coat the plate. Plates were washed with PBS 
containing 0.05% Tween 20 and incubated for 
30 min with a 0.5% BSA solution for blocking. 
Samples were added to the wells (100 µl/well) 
and incubated for 1  h. After washing with 
PBS containing 0.05% Tween 20, horseradish 
peroxidase (HRP)-labeled anti-IgA/IgG 
antibody was added and incubated for 1  h. 
Plates were washed once more, and a color 
reagent, O-phenylenediamine, was added and 
incubated for 10 min. Next, 2N sulfuric acid 
was added and the absorbance was measured 
at 490 nm using a microplate reader (Bio-Rad 
Laboratories, CA, USA). Concentrations of 
the proteins were calculated from the curves 
prepared with reference to the standard 
molecules. In case of CICs–ELISA, the base 
of the IgA ELISA was used as described above, 
except for the use of HRP-labeled anti-IgG to 
detect CICs.

�� Statistical analysis
All data are expressed as the mean ± standard 
deviation (SD). Statistical significance was 
determined at a p-value of <0.05. Calculations 
were performed using the statistical package 
StatView 5.0 (SAS Institute, NC, USA).

Results
��Serum IgA & IgA+ B cells

Total serum IgA concentration was measured in 
healthy control individuals (n = 22) and IgAN 
patients (n = 30; Figure 1A) by ELISA. Average IgA 
concentrations were significantly higher in IgAN 
patients than control individuals (349  ±  116 
and 248 ± 42 mg/dl, respectively; mean ± SD; 
p < 0.01). CIC concentration was significantly 
higher in IgAN patients than control individuals 
(107  ±  33 and 61  ±  21  mg/dl, respectively; 

mean ± SD; p < 0.01). In the serum of IgAN 
patients, the concentration of IgA, which exists 
as an immune complex, was also higher than 
that in the serum of healthy persons (Figure 1B).

We next stained freshly isolated PBMCs 
with anti-CD5 and -CD19 to analyze B‑cell 
populations by flow cytometry. We described 
that CD5+CD19- populations were classified as 
T cells (activated or undifferentiated). B1 cells 
are very important lymphocytes involved in 
autoimmunity. Recently, until its marker was 
clearly established, CD5 was used as the B1 cell 
marker. In an earlier report [32], CD5+ cells with 
the marker profile CD20+CD27+CD43+ were 
found to account for 75% of human B1 cells.

Then, in this study, we changed to CD5+cells 
from expression of B1 and B2 cells. The ratio of 
total B cells (B1 and B2 cells) in lymphocytes 
was similar in control individuals and IgAN 
patients (~20%; data not shown). However, 
the percentage of IgA+ CD5+CD19+ and 
CD5-CD19+ cells was higher in IgAN patients 
(Figure 1C & D). IgAN patients had 61 ± 14% IgA+ 
CD5+CD19+ cells, while control individuals 
had 34 ± 7% IgA+ CD5+CD19+ cells (n = 3 
per group; p < 0.01). Similarly, IgAN patients 
had elevated IgA+ CD5-CD19+ cells compared 
with control individuals, with 40 ± 5.5% and 
20  ±  5.5%, respectively (n  =  3 per group; 
p < 0.01).

�� Effect of jacalin on PBMC TGF‑b 
production
We determined that jacalin binds to nearly 
100% of purified CD4+ T cells (Figure 2). Next, 
we investigated the effect of jacalin on in vitro 
cell culture. Total PBMCs were cultured in vitro 
under Th2 polarization conditions and TGF‑b 
production was measured after 5 days (Figure 3). 
Since one of the main cytokines produced by Treg 
is TGF‑b, this cytokine was used as a marker of 
Treg differentiation [33]. TGF‑b production was 
significantly increased under Th2 polarization 
conditions (mean: 1950 pg/ml) compared with 
media alone. The addition of jacalin to cell 
culture further increased TGF‑b production 
(2500 pg/ml). This is indirect evidence that the 
percentage of Treg was increased by jacalin.

�� Effect of jacalin on Th2 differentiation 
in purified CD4+ T cells
Purif ied CD4+ cells were cultured under 
Th2 stimulation conditions with or without 
jacalin, as described above. The expression of 
CD25 and CD152 was measured every day for 
5 days and the change in CD4+CD25+CD152-, 
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CD4+CD25-CD152+ and CD4+CD25+CD152+ 
T  cells was plotted longitudinally (Figure  4). 
CD152, also referred to as CTLA‑4, is known 
to be expressed on FOXP3+ cells, a lineage 
marker of Tregs [33]. Jacalin addition resulted 
in higher levels of CD4+CD25+CD152+ cells 
over all 5 days. CD4+CD25+ cells, which may 
be Tregs or activated T cells, and CD4+CD152+ 
cells were both increased. CD4+CD25-CD152- 
cells represent effector cells (Th1, Th2 and 
Th17). In Figure  5, the ratio of regulatory 
cells (i.e.,  CD4+CD25+, CD4+CD152+ and 
CD25+CD152+) to effector cells was plotted 
longitudinally over the 5‑day culture. Values 
were normalized to the control media-alone 
condition to equalize cell numbers. With the 

addition of jacalin, there was a higher ratio 
of Tregs:effectors, peaking at 0.6 at day 3. By 
contrast, Th2 conditions alone did not alter the 
regulatory:effector T‑cell ratio.

�� Effect of jacalin on PBMC 
production of IgA
We next determined the effect of jacalin on IgA 
and IgG production. PBMCs were cultured 
in  vitro under Th2-stimulating conditions 
and IgA production was measured by ELISA 
(Figure 6A). Although IgA production increased 
under Th2 stimulation compared with media 
alone (1.1-fold higher; p < 0.01), Th2 stimulation 
plus jacalin resulted in IgA production similar 
to the control condition. There was no change 
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Figure 1. Circulating IgA and IgA+ B cells are elevated in IgA nephropathy patients. (A) Total IgA concentration in control 
(248 ± 42 mg/dl; n = 22) and IgAN (349 ± 116 mg/dl; n = 30) serum. (B) Circulating immune complex concentration in control 
(61 ± 21 mg/dl; n = 22) and IgAN (107 ± 33 mg/dl; n = 30) serum. (C) IgA expression on the surface of CD5+CD19+ B cells (D) and CD5-

CD19+ B cells. Data presented as mean ± SD. 
*p < 0.01. 
CIC: Circulating immune complex; IgAN: IgA nephropathy; SD: Standard deviation.Author P
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in IgG production under any of the conditions 
(data not shown). Therefore, the ratio of 
IgA:IgG produced is reflective of the change 
in IgA production (Figure  6B ; normalized to 
control).

�� Ig production by stimulated CD5+ 
CD19+ & CD5-CD19+ B cells
It is known that IgA and IgG production 
can occur in both B2 cells with helper T‑cell 
activation and in B1 cells in a helper T‑cell-
independent manner [34]. We next determined 
the ability of purified CD19+ B cells to produce 
Ig in a T‑cell independent capacity (i.e., IL‑4 
stimulation alone through B1 cells), as well as 
in a T‑cell-dependent capacity (i.e.,  IL‑4 and 
anti-CD40  through B2 cells). B  cells were 
cultured for 5  days under these conditions 
and Ig concentrations were measured in the 
supernatants. While IL‑4  with  anti-CD40 
stimulation increased IgA concentration over 
media alone, the addition of jacalin seemed 
to abrogate this effect slightly (Figure 7A). The 
ratio of IgA:IgG reflected the changes in IgA 
production (Figure  7B). A similar trend was 
observed with IL‑4 stimulation alone; however, 
it was not significant (Figure 7C & D).

Discussion
�� Mechanism of IgA production

Serum IgA concentrations are elevated in IgAN 
patients, with over 50% of patients having 
levels above the control range. Excess IgA 
is deposited in the glomerulus, exacerbating 
the disease. Therefore, a treatment to reduce 
IgA levels in such patients would be highly 

beneficial. In this study, it was found that the 
ratio of lymphocytes and B cells was similar 
in IgAN patients and healthy individuals; 
however, there were greater numbers of 
IgA+ CD5+CD19+ B and CD5-CD19+  cells 
in IgAN patients. This observation is a 
likely factor behind the elevated IgA serum 
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Figure 2. Jacalin-binding capacity of CD4+ helper T cells. (A) Representative flow cytometry plot of the lymphocyte gate on purified 
CD4+ T cells. (B) Fluorescence intensity of FITC-IgG isotype (control) on gated CD4+ T cells. (C) Fluorescence intensity of FITC-jacalin on 
gated CD4+ T cells. 
FITC: Fluorescein isothiocyanate; FSC: Forward scatter; SSC: Side scatter.
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concentrations in patients. The imbalance in 
B‑cell classes may be due to abnormal helper 
T‑cell induction of class switching in B cells. 
Although IgA+ cells do not always produce 
antibodies, B1 cells, which are known to 
produce antibodies in mucosal immunity in 
a T‑cell-independent manner, mainly produce 
IgA [35]. We found that IgA production from 
B cells in IgAN patients increased 1.5 times 
compared with that in healthy individuals. 
Considering that Th2 cells produce cytokines 
that stimulate antibody production, we have 
proposed a model in order to explain IgA 
production in IgAN patients (Figure 8). To date, 
the antigens responsible for the pathogenesis of 
IgAN have not been determined. However, it 
can be assumed that there is a defect in Th2 
stimulation of antibody production. Upon 
antigen stimulation, undifferentiated helper 
T cells mature into Th2 cells, which produce 
IL‑4 and IL‑2. These cytokines promote 
B2 differentiation, which secrete additional 

cytokines and mature into antibody-producing 
plasma cells. Concurrently, in the presence 
of IL‑4, B1 cells transform into plasma cells 
and produce IgA. Some of the IgA produced 
comprise IgA1 with abnormal sugar chains [17], 
which are deposited on the glomerulus and 
exacerbate disease. Treg types, such as Th3 
and Tr1 [36], vary in the type of cytokines they 
produce, with many of their functions still 
unclear. However, Tregs are known to suppress 
Th2 cells and autoimmune responses. Rather 
than removing the allergy antigen, inhibition 
of Th2-induced antibody production may be 
achieved by preventing the differentiation of 
Th0 cells into Th2 cells.

�� Suppression of IgA production by 
jacalin
The aim of this study was to determine the 
suppressive effect of jacalin on B‑cell IgA 
production. We found that jacalin decreases 
Th2-induced IgA production in  vitro. Since 
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IgG production remained unchanged, the 
IgA:IgG ratio was reflective of the change in 
IgA production. There are several possible 
mechanisms to explain the effect of jacalin. 
Jacalin has a high affinity for CD4+ T cell, and 
although it is believed that jacalin binds the 
sugar chains on the cell surface, the absolute 
target of jacalin is unclear. Jacalin is considered 
to recognize sugar types such as T (CD176: 
Gal b1-3GalNAc a1-O-R), Tn (CD175: 
GalNAc a1) and STn (CD175s: NeuAc 
a2-6GalNAca1-O-R). Although these sugar 
antigens exist on the surface of lymphocytes 
[37,38], their functions are unknown. Therefore, 
the specific effect of jacalin due to binding these 
sugars remains unclear.

The amount of TGF‑b produced by Tregs was 
increased by the addition of jacalin, implying 
that Th2 differentiation was decreased and 
Treg suppression was increased. Under these 
conditions, there would be a decrease in B2 
differentiation. In support of this, IgA production 
by B cells was suppressed with the addition of 
jacalin, implying that jacalin suppressed the 
differentiation of B cells to plasma cells. It is 
known that IgAN patients have elevated levels 
of B1 cells compared with healthy control 
individuals [35]. B1 cells of the mucosal immune 
system are considered to function in a T‑cell-
independent manner. The effect of jacalin on 
B1 cells is therefore of great interest; however, we 
did not find that jacalin significantly suppressed 

IgA production of purified B cells. The effect 
of jacalin on IgA production in PBMC cultures 
is therefore likely due to increased TGF‑b 
production from Tregs.

Accordingly, a second possible mechanism 
for jacalin is through Treg induction. FOXP3 
is a lineage marker of Tregs, which also express 
CD25+. CD152, also known as CTLA‑4, is 
present on Tregs and can induce Th0 cells to 
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differentiate into Tregs by signaling through B7 
[39,40]. Accordingly, CD25 and CD152 were used 
as markers for Tregs in this study.

CD25+CD4+ Tregs are cell groups that 
control superfluous immune responses such as 
in an autoimmune disease and allergy. Tregs 
are highly expressed on CD152 (CTLA‑4) and 
FoxP3 is known to control this expression [41]. 
Tregs control the immune response by lowering 
the activation ability of other T cells by APCs, 
for which CTLA‑4 is indispensable. Thus, 
owing to its inhibitory effect, we chose Tregs 
as a marker system.

However, the general marker of Tregs is 
known to be FoxP3. Tregs have a constant, 
high expression of CD152 (CTLA‑4) and it is 
known that Foxp3 controls the expression of 
CTLA4. We distinguished the regulatory cell in 
this study from the Tregs that expressed FoxP3. 
CD4+CD25+CD152+ Tregs were expressed in 
this study.

Treg activation is known to require CTLA‑4 
and CD28 signaling [42]. However, CD28 was 
not added to the in vitro cell culture experiments. 
It is possible that jacalin induces an effect similar 
to that of CD28.

To quantify the tolerogenic effect of jacalin, 
we determined the ratio of regulator to effector 
T cells. Jacalin has been considered an adjuvant, 
which implies that it induces the activation of 
the immune system, particularly the activation 
of T cells. However, at the same time, jacalin 
induces the upregulation of CD4+CD25+CD152+ 
Tregs and exerts an inhibitory effect on IgA 
synthesis.

It  found that jaca l in increa sed 
CD4+CD25+CD152+ Treg numbers without 
increasing effector T‑cell numbers, leading to an 
elevated regulatory:effector ratio. Therefore, jacalin 
might function by two different mechanisms: 
the induction of CD4+CD25+CD152+ Tregs 
from Th0 cells and the inhibition of plasma cell 
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differentiation. The details of these mechanisms 
require further investigation.

�� Therapeutic potential of jacalin
Reducing circulating IgA levels in IgAN 
patients is necessary to decrease IgA deposits 
in the glomerulus. Current treatments utilizing 
steroids are suboptimal due to their potential 
side effects. However, autoimmune diseases 
may be treated by immunotherapies, which 
correct defects in the immune system. In the 
case of IgAN, promoting immune tolerance 
to reduce IgA production would be an ideal 
solution. The goal of this study was to develop 
a novel treatment that showed efficacy in vitro. 
We suggest apheresis treatment with jacalin 
as an immunostimulant as a possible medical 
treatment for direct stimulation of immune cells 
in the blood.

Other diseases such as alcoholic cirr
hosis [43], connective tissue disease [44], 
lymphoproliferative disease [45] and chronic 
hepatitis [46] also have elevated circulating IgA. 
IgA can also be deposited in the glomerulus 
of IgAN patients with normal concentrations 
of circulating IgA. The relationship between 
IgA receptors and IgA sugar types have been 
reported as important factors in disease 

pathogenesis. IgA with abnormal sugar types 
will aggregate, causing the formation of 
CICs containing IgA [47]. These abnormal 
sugar chains are considered a defect in the 
glycosylation system [48]. Deposition of CICs 
on mesangial cells promotes proliferation and 
the production of inflammatory cytokines, 
which attract immune cells, eventually leading 
to collagen production and nephropathy [49]. 
It was hypothesized that jacalin inhibits CIC 
formation by binding to abnormal sugar 
chains in IgA. Herein, it was demonstrated 
that jacalin increased CD4+CD25+CD152+ 
Tregs and reduced IgA production under 
Th2 stimulation conditions. These findings 
highlight the potential use of jacalin as a 
treatment for IgAN and other diseases with 
elevated production of IgA.

Conclusion
In this study, we show that jacalin can 
suppress IgA production in  vitro. Jacalin 
promoted differentiation of Tregs and 
suppressed differentiation of plasma cells from 
B cells. Taken together, our findings indicate 
that jacalin has the potential to be a safe 
immunotherapeutic approach for the treatment 
of IgAN.
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Figure 8. Jacalin creates a tolerogenic state, which regulates IgA production. In this model, it 
is hypothesized that jacalin induces naive T cells to differentiate into Tregs, which inhibit the 
Th2-induced humoral immune response. This leads to a decrease in plasma cell differentiation from 
B cells. 
CTL: Cytotoxic T lymphocyte; TCR: T‑cell receptor; Th0: Naive T cell.
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Future perspective
Modern advances allow measurement of 
the concentration and sugar-chain make-up 
of IgA. Moreover, research on an early 
detection method for IgAN is progressing. 
Due to these advances, verif ication of the 
immunotherapeutic benefits of jacalin and 
determination of its mechanism of action 
are feasible. The development of an effective 
therapy for IgAN will positively impact the 
number of patients with renal failure.
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Executive summary

IgA is a marker of disease

�� Elevated serum IgA levels are common in IgA nephropathy and can exacerbate disease.

�� IgA nephropathy patients have elevated numbers of circulating IgA+ B1 and B2 cells.

Jacalin is a novel immunoregulatory agent

�� Jacalin is capable of binding to CD4+ T cells and promotes TGF‑b production in in vitro peripheral blood mononuclear cells (PBMCs) 
stimulated with IL‑2 and IL‑4 (Th2 stimulation conditions).

�� In purified CD4+ cells, the addition of jacalin to Th2 stimuli causes an increase in CD4+CD25+CD152+ Tregs compared with Th2 stimuli 
or media alone.

�� In purified CD4+ cells, 5‑day cell culture with jacalin and Th2 stimuli results in a higher Treg:effector T‑cell ratio than Th2 stimuli or 
media alone.

�� In PBMCs, jacalin reduces Th2-stimulated IgA production to nonstimulated levels, but has minimal effect on purified B cells cultured 
under IgA-inducing conditions.

The potential for a safe immunotherapy

�� Jacalin induced Tregs in vitro, which inhibited Th2-mediated B‑cell differentiation and antibody production.

�� Jacalin, a naturally occurring lectin, is capable of reducing IgA production from human PBMCs in vitro and has the potential to be a 
safe immunotherapy.
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